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This  paper  presents  an explicit di f ference me thod  for  solving the conjugate problem o f  pouring mol ten  meta l  

into a cast ing m o l d  and  its solidification under  the action o f  centrifugal forces  with allowance for  the f ree  

surface. 

The development of numerical methods for simulating the processes of filling casting molds with molten 

metal under the action of centrifugal forces in foundry machines with a vertical rotational axis is an urgent problem 

for some areas of foundry concerned with the centrifugal casting of shells, bimetal castings, and ingots. 
In the present article we propose a rather simple numerical method of calculating the filling of a casting 

mold with molten metal with account for the free surface and for its subsequent solidification. 
In the study of flow and heat transfer, molten metal is usually considered as an incompressible Newtonian 

fluid [ 1, 21. In our case we account for the motion of the molten metal with the free surface using a method based 

on a modified variant of the SMAC-method [3 ]. The basic dependent variables are taken to be the velocity vector 

components u and v, the normalized pressure P = P / p ,  the angular velocity of the rotation of fluid co, and the 

temperature T. The basic equations describing the flow of molten metal with account for free convection in the 

Boussinesq approximation, the entrainment of the fluid layers into rotation by the mold, and the heat transfer have 

the following form in cylindrical coordinates: 
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Release of the heat of phase transition in the solidification of the molten metal within the range of 

temperatures of the liquidus TL - solidus TS is taken into account by the effective heat capacity [4 ]: 
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Fig. 1. Scheme of the computational domain: 1) molten zone of the casting; 

2) surface cells occupied by molten metal; 3) "vacuum" cells; 4) fictitious ceils; 
5) two-phase zone of casting; 6) solidified portion of the casting; 7) casting 

mold; 8) markers. 
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The numerical implementation of momentum transfer equations (1)-(4) is based on the explicit scheme of 

splitting by physical factors proposed by O. M. Belotserkovskii [5] with the use of a "staggered" grid. The 

configuration of the free surface of the fluid is determined by using a Lagrange grid of discrete particles-markers 

simultaneously with a fixed Euler grid, in which the variables (P, u, v, T) are determined (Fig. 1). According to 
the method of markers, the particles are distributed not only over the surface, but also throughout the entire volume. 

The markers move with the velocity calculated by interpolation between the values of the local velocity of the 

medium in the adjacent cells of the Euler grid. The thermal state equation of molten metal, solidified skin, and 

casting mold (5) is approximated by Nikitenko's three-layered scaler [6 ]. On the grid 

ri+ 1 = r i + hri;  z]+ 1 = z] + hz]; (7) 

i = 1 , 2  . . . .  , M ;  j = l , 2  . . . .  , N ;  Z n + l = ~ n + A V ;  n = 0 , 1 ,  .... co, 

it is worthwhile to use cells of equal volumes; this is associated with a discrete representation of a continuous 
medium determined by the location of the markers. For this purpose, we find the coordinates of the boundaries of 
the cells from the solution of the system of equations 

k+l  k (r2_l -t- r 2 + 1 ) / 2  r i r i = r i + 7 - -  , 

where 7 is the iterative parameter; k is the iteration number. 
The approximation of the system of equations (1)-(5) can be represented in the form 
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The difference analog for the functions occurring at the center of the cells is written in the following form: 
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The derivatives with respect to the coordinate z are approximated in the same way as with respect to r. The 
momentum transfer equations (9), (10), and (13), whose variables are located at the cell boundary, have the 
following finite-difference formulation: 

~r (ru~o) = ri hr i + hri+ 1 r i+l /2  (Ui+l, ] + u))) (~Pi+l,j + ~ij) - 
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Thederivatives for the vertical component v are approximated similarly to the component u. 

The kinematic viscosity coefficient v, taking into account the turbulent character of flow, is taken in the 

form [71: 

iovl V=Vm+~_s  -~- , (16) 

where A is the determining grid spacing; Rea is the grid Reynolds number (Rea = 2; l is the mixing length (a 

multiple of the value of the grid spacing A is usually used); Vm is the molecular viscosity. 

The effective thermal conductivity of the metal in molten state is defined by the expression 

2 = 2too I + Cp I v I  A. (17) 

The equation for the pressure field (10) is elliptic; it is solved at each time step by the method of sequential 

relaxation [8 ]. The process of obtaining the solution is considered to be completed, when ihe following condition 

is satisfied: 

J 

where v2 is a small positive number. 
The necessary conditions for the stability of solution of the difference momentum transfer equations (8)-(9) 

are determined by means of the technique of differential approximations: 

A~ _ 2v (19) 
max (u 2 , 2 ) "  

Along with this, another restriction on the integration step can be imposed by the conditions of transfer of the 

markers on the Euler grid: 

( hri hzJ ) (20) 
Ar <- min I uij----~ I viyl " 

�9 The conditions of stability found for the difference equation (14) by means of the maximum principle [91 impose 

the following restrictions: 
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1 + 2 0  / ,  O__.0. (21) 
Ar < min 2~ (h~i 2 + h-2)zj 

J 
Test calculations showed that the admissible accuracy of the solution of the linear heat conduction equation was 

observed within the limits of variation of the parameter O = 0...5. 
In our calculations of the processes of filling and heat exchange of a solidifying metal in a cylindrical mold 

the initial tempearture distribution is taken to be homogeneous: 

T ( 0 ,  r ,  z ) =  T o . (22) 

Molten metal enters into the mold with the prescribed velocity 

u (r ,  rg, zg)= u0; v ( r ,  rg, z g ) = v  o; T (r ,  rg, zg)= T 0. (23) 

On the solid wall of the mold, the conjugation boundary of the two-phase and molten zone, and on the symmetry 

axis, we assume the condition of zero leakage for the normal velocity component V• The tangential velocity 

satisfies the condition of free slipping or adhesion 

0Vii (24) 
On - 0 ;  V ll = O . 

Since the tangential velocity component is calculated at a distance of A/2 along the normal from the surface, we 

additionally introduce the cells lying beyond the boundary [10] and determine in them the fictitious velocity: 

Vllfi c = (i -- )t) Vllin , (25) 

where y is a coefficient determining the type of conditions (24) (y = 0 is the slipping condition, V = 2 is the complete 

adhesion, ~, = 0...2 is the partial adhesion); V~lin is the velocity inside the computational domain. 
The assignment of velocities on the free surface of the fluid, whose cells are marked, is performed according 

to the recommendations of [11 ]. 
To solve the grid equation (11), we assign the pressures P = 0 in "vacuum" cells. The conditions at the 

boundary between the fluid and the body of the mold or on the moving boundary of the solidification front are 

prescribed by the known velocity component along the normal to the wall. In this case Eqs. (11)-(12) are 

transformed in the following manner: 

3 r /~=0 ' 3z /~=0 ' ~ r u = 0 ,  3 r v = 0 .  (26) 

The conditions of heat exchange of molten metal on the free surface in the closed volume of the mold are 

taken in the form 

• 2t OT (27) 
= 0 .  

Heat removal from the external surface of the mold is described by the conditions of radiative-convective heat 

exchange: 

OT 4 (28) a - T ed) + (T 4 -- = -- Treed) �9 

Taking into consideration the fact that the grid values of temperatures are located at the center of the cells (see 

Fig. 1), we determine the surface temperature of the body ?'surf by the Newton method. 
The heat exchange in the zone of contact of the casting metal with the mold surface is taken into account 

in the approximation of the linearity of temperature distribution over the cross section of the thermal coating and 

of the gap formed: 

-- ]t OT[ = - i t  OT I = K z ( T s I _  Ts2) ' (29) 
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Fig. 2. Dynamics of the filling and solidification of a casting in centrifugal 

casting: a) 7: -- 10 sec; b) 60; c) 90; d) 120 sec. 

where 

6coat c~ ) -1 

c~oat + 6g ara d + ~.g 
ara d = ere d GO (rs21 +.T~s2) (Tsl + Ts2 ) �9 

For numerical implementation of the mathematical model we use an additional condition of mass ba l ance  
of the metal added: 

1" 

f Ofil d~ E E ~ ( r2 2 (30) _ r i_ l )  hzj R i j ,  
0 i ] 

where Oft I is the volumetric velocity of entering of the metal into the mold; 

1 -  cell labeled by markers ,  
Ri] = 0 - <<vacuum>> cell. 

F o r  condition (30) to be satisfied, we prescribed the required quantity of markers, whose number was determined 

from preliminary calculations; it depends on the grid spacing and the accuracy of the solution of the equation for 
the pressure field, Eq. (18). 

A comparison of the results of test calculations with the well-known solutions for the drop of a liquid column 
in a basin [3 ], for the problem of thermal convection in a closed volume [12 ], and for the capture of a fluid by a 
rotating cylinder up to the formation of a rotation paraboloid [13 ] showed sufficient qualitative and quantitative 

coincidence. 
For a comprehensive check of the adequacy of the proposed mathematical model, we conducted a special 

experiment* in the conditions of the pilot plant of the Scientific-Industrial Association "Chermetmekhanizatsiya." 

Using specially designed fastenings, a centrifugal casting mold, previously heated to a temperature of 343 K, was 
attached to the faceplate of a vertical turning lathe used as an industrial model of a vertical-type centrifugal 
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Fig. 3. Dimensions of the solidified skin along the height of casting: 1) 
experimental data; 2) calculation by the model. 

machine. Metal was poured through a filling funnel directly into the casting mold rotated with a frequency of 15 

sec - I .  The time of filling a 240 kg portion of iron with initial temperature 1593 K was 65 sec. Upon filling, the 

centrifugal casting mold with the metal, whose free surface took the form of a paraboloid, was rotated for 27 sec. 

Then in 8 sec the rotation of the casting mold was stopped. Upon complete solidification of the casting, we measured 

the thickness of the skin in different cross sections over the height of the casting. 

For calculations the following characteristics were used: casting mold height 0.67 m; inner and outer radii 
of the casting mold 0.165 and 0.360 m; the number of markers corresponding to 240 kg of the metal poured was 
assumed to be equal to 300; the quantity of the grid partitions was 12 • 21. The thermophysical parameters of the 

casting-casting mold system were taken from [14]. An algorithm for the calculation of the process of filling a 

casting mold and casting solidification is implemented in the Turbo Pascal language. Computations were performed 

on an IBM PC/AT 386 computer. The time of computing a control variant amounted to 12 h. The integration step 

was taken to be equal to 0.001 sec. 
Figure 2 presents the dynamics of filling a casting mold at different time instants. On pouring, poured, the 

jet of metal entering from above impacts on the lower end face of the casting mold, turns, and rises up along the 

~ateral surface of the mold (Fig. 2a). As the melt rises under the action of centrifugal forces, the metal cools down 

appreciably, so that interceptions in the flow nose are formed (Fig. 2b). On stoppage of the mold, the molten portion 

of the metal begins to descend (Fig. 2d). It should be noted that at this time thermogravitational convection begins 
to manifest, which was almost completely suppressed by the centrifugal forces during the rotation of the mold. 

Comparison of the calculated and experimental data on the thickness of the cast skin (Fig. 3) shows good 

agreement of the results obtained with the use of a rather coarse grid. 
The results of numerical experiments indicate the efficiency of the proposed method for calculating the 

hydrodynamic problems of filling and heat exchange in casting molds under the action of centrifugal forces and 

with account of the free surface of the fluid. 

N O T A T I O N  

r, z, transverse and longitudinal coordinates; u, v, horizontal and vertical velocity components; V, velocity 
vector; co, angular velocity of rotation; P, pressure; _P, normalized pressure; T, temperature; ~-, time; g, free fall 

acceleration; r ,  coefficient of volumetric expansion; C, heat capacity; 2, thermal conductivity; p, density; L, crys- 

tallization heat; v, viscosity; ReA = I V I h/v, Reynolds grid number; h, grid spacing; l, mixing length in a turbulent 
flow; O, relaxation parameter; a, coefficient of convective heat transfer; 7, coefficient defining the boundary 

conditions at the solid wall; D, flow divergence; 9, volumetric velocity of filling; e, emissivity; a 0, Stefan-Boltzmann 
constant; ~, thickness of a layer. Indices: r, z, I, j, numbers of grid nodes; n, number of the integration step with 

* A.A. Sokol and V. I. Ismagilov took part in the experiments. 
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respect to time; L, S, temperatures of the liquidus and solidus, respectively; s, temperature on the surface; reed, 
temperature of the medium; 0, initial state of the system; m, metal; tool, molten state of the metal; red, reduced 
emissivity in the gap; rad, radiant component of the heat transfer coefficient; g, gas-air gap; coat, heat-insulating 
coating; fil, filling. 
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